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Summary of Progress

1) Construction of Robustly Good Trellis Codes for Use With Sequential

Decoding

Sequential decoding has been shown to be the best alternative for achieving large coding

gains with trellis coded 8-PSK and 16-QAM modulation [1]. Preliminary results reported

earlier on code performance were based either on codes designed to maximize asymptotic

coding gain, i.e., optimum free distance (OFD) codes, or on codes designed to maximize

the computational speed of sequential decoding, i.e., optimum distance profile (ODP) codes.

More detailed studies have since shown that the best overall performance is not achieved

with either OFD codes or with ODP codes.

Rather, a new approach has been developed for constructing trellis codes which are

neither OFD nor ODP. We call the new codes robustly good trellis codes. Given that a

robustly good trellis code of constraint length v has been found, the approach used to find

a constraint length v + 1 robustly good trellis code is to find the code that improves the

free distance or the distance profile of the constraint length v code, with priority given to

improving the free distance. In other words, we try to find a longer code which has a free

distance or a distance profile superior to or identical to the shorter one. Systematic feedback

8-PSK and 16-QAM robustly good trellis codes with v up to 15 and asymptotic coding gains

up to 6.66 dB are obtained using this approach. Compared to ODP and OFD trellis codes,

the robustly good trellis codes provide a much better trade-off between free distance and

distance profile. Indeed, the new codes achieve nearly the same free distances as the OFD

codes and nearly the same distance profiles as the ODP codes.

A paper based on these new results is being prepared for submission to the IEEE Trans-

actions on Information Theory. A summary of this paper, which will be presented at the

1993 IEEE International Symposium on Information Theory, is included as Appendix A of

this report [2].

2) Unequal Error Protection Capabilities of Convolutional Codes

An important practical problem in many coding applications is unequal error protection

(UEP). Although this problem receives little attention in the literature, it can be of great

importance in applications such as image transmission from deep space, where different parts

of the data stream, representing, say, important feature information rather than background

scenes, must be protected with higher reliability than the rest of the data. Algebraic block

codes which have UEP capabilities have been studied by some researchers. But little work

has been done on the UEP properties of the convolutional codes most often found in space

and satellite applications.

We have recently begun a study of the UEP capabilities of (n, k, m) convolutional codes

with k > 1. The usual transfer function analysis technique is modified to calculate an upper

bound on the bit error rate (BER) P(bi)(E) for each input bit position i, 1 _< i < k. We also



definea distance vector d for convolutional codes as follows:

(1)

where d_ i) is the effective minimum free distance seen by input bit position i, 1 < i < k.

d is then a measure of the UEP properties of a given code, i.e., if d is a constant vector, then

all input bit positions have equal error protection, but if d) _) > d) j) for some i and j, then

input bit position i has greater error protection than input bit position j. Most optimum

free distance (OFD) convolutional codes are found to have constant distance vectors, i.e.,

they provide no UEP capability. One of the goals of our research is to construct convolu-

tional codes with UEP properties, i.e., for a given desired distance vector, find the encoder

realization with the minimum overall memory.

A paper based on the modified transfer function analysis technique of UEP capabilities

will be presented at the 1993 IEEE International Symposium on Information Theory. A

summary of this paper is included as Appendix B of this report [3]. Additional progress on

this problem will be presented in our next report.

3) New Results on Rate 1/n Convolutional Codes

The problem of finding good large constraint length, low rate convolutional codes for deep

space applications is again being investigated. An intriguing new formula for computing the

free distance of rate 1In convolutional codes has been discovered. This formula is based

on correlation coefficients of both the information sequence and the generator sequence. It

allows us to show that for the class of randomly constructed (n, 1, m) convolutional codes

lim dsree 1- (2)
m--'°on(rn + l) 2'

with probability 1, i.e., in the limit of large constraint length, the free distance of almost

all codes approaches one-half the constraint length. This result is consistent with what is

known for short OFD codes, but suggests the existence of much better long codes than was

previously thought possible.

The new formula for computing free distance has been used to construct some large

constraint length codes with excellent distance properties. These codes are close to optimal

for small constraint lengths and their distances continue to grow as suggested by (2) for larger

constraint lengths. The new codes are extremely powerful and would make good candidates

for use with sequential decoding in deep space applications.

A paper based on this new formula will be presented at the 1993 IEEE International

Symposium on Information Theory. A summary of this paper is included as Appendix C of

this report [4]. Further progress on this problem will be presented in our next report.



4) New Results on Double Memory Convolutional Codes

Unit Memory (UM) convolutional codes, i.e., (n, k, 1) codes with one memory unit per

input bit position, were introduced by Lee [5]. UM codes were found to have good distance

properties and their byte orientation (k bits per byte) made them desirable as inner codes

in concatenated systems with symbol based (Reed Solomon) outer codes. We have begun to

study Double Memory (DM) codes, i.e., (n, k, 2) codes with two memory units per input bit

position. We feel that DM codes may have even better distance properties than UM codes,

while maintaining their byte orientation (2k bits per byte). This belief is based on a new

upper bound which indicates that the free distance of DM codes can be larger than the free

distance attained by other codes with the same rate and encoder memory. We are currently

conducting a search for optimal DM codes. These codes will be good candidates for use in

concatenation systems.

A paper based on these results was presented at the 1992 Allerton Conference on Com-

munications, Control, and Computing. A copy of this paper is included as Appendix D of

this report [6]. The results of our search for optimum DM codes will be presented in our

next report.

5) Constructing Convolutional Codes from Quasi-Cyclic Codes

The lack of a suitable algebraic structure has long proved a hindrance to researchers try-

ing to construct good long convolutional codes. Although some connections between cyclic

codes and convolutional codes have been found, few good new convolutional codes have

been constructed using these connections. Recently, Tanner [7] suggested an interesting link

between quasi-cyclic codes and convolutional codes. We have extended Tanner's work and

developed an algorithm for constructing a convolutional code from a given quasi-cyclic code.

The free distance of the constructed convolutional code is lower bounded by the minimum

distance of the quasi-cyclic code. Some long convolutional codes with large (but subopti-

mal) free distances have been found using this construction. Our hope is that additional

development of this theory will yield large classes of good long convolutional codes.

A paper based on these results was presented at the 1992 DIMACS Conference on Coding

and Quantization. A copy of this paper is included as Appendix E of this report [8]. Further

results will be presented in our next report.
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Abstract

In this paper, tile design criteria for trellis codes with sequential decoding are exam-

ined. A comparision of trellis codes with Optimum Distance Profile (ODP) and Optimum

Free Distance (OFD) reveals that 1)oth ODP and OFD trellis codes for some constraint

lengths may not result in the best trade-off between error performance and computational

performance when sequential decoding is used. A new approach is proposed to construct

robuslly good lrollis co(los for use with sequential decoding. The new codes obtained using

this approach achieve nearly lhe same free distances as the OFD codes and nearly lhe same

distance profiles as the ODP codes.

IThis work was supported I)y NSF grant NCR 89-03429 and NASA grant NAG 5-557.



SUMMARY

.Xlost of tile treltis codes constructed thus far have been for use with the Viterbi

algoriihm[1,2]. Tile asymptotic error performance of lhe Viterbi algorithm[3] is deter-

mined bv tile minimum fi'ee Euclidean distance of tile code. Thus, the free distance

has ]teen used as the main criterion in code construction for use with lhe Viterbi

algorithm[l, 2]. However, the computational effort of the Viterbi algorithm grows

exponenlially with the code constraint length u. This limits its application to codes

wilh small values of u and relatively modest coding gains. To achieve larger coding

gains with tolerable computational complexity, alternative decoding algorithms must

be used.

li is well known that sequential decoding [1]-[6] can pe,'form almost as well as

the Viterbi algorithm and its computational complexity is essentially independent of

u. Thus. larger coding gains are possible when larger constraint length codes are

used wilh sequential decoding. In [7, 8, 9], sequential decoding has been used to

decode trellis codes and these papers demonstrate that sequential decoding is a good

alternalive to the \'iterl)i algorithm, llowever, very few papers have addressed the

problem of constructing lt'ellis codes for use with sequential decoding. In lhis paper,

trellis codes wilh Optimum Distance Profile (ODP) and Optimum Free Distance

(OFD) are examined and design criteria for trellis codes with sequential decoding

are discussed. \Ve show that neilher llle ODP nor the OlVD trellis codes provide the

1)esl lrade-olT between distance profile and free distance. Thus, a new algorilhm is

proposed to construct robustly good trellis codes.

First. we show that the computational distrilmtion of sequential decoding for

lrellis codes is a function of tile code's column distance function. Consider a rate

/,,/k + I trellis codes. For a partial path associated with a message m of length 1

branches (a" x 1 information hits), the cumulative Fano metric is given I)v

1

f.(l) = - .i +
i=O

= -a_ _ - is the received signal,(iwhere rl2[zi, a_] IIz, I[2, -i ,"' is the hyl)othetical trans-

mitted signal, n is a positive constant, and /St(zi) is a. constant independent of the



_ransmitled signal. It can further beshownthat L(I) is upper bounded by

l

_< + 3(=,), (9)
i=0

where d 2 iS the column distance function of the code[10]. A sequential decoder aban-

dons a path whenever the Fano metric falls below the metric of a temporarily more

likely path. From (1) it follows that a partial path has a small path metric and

is re,iected by ihe decoder if its distance from the revceived sequence is sufficiently

large. But it, is the speed of this rejection that deterimines the computational e[fort.

\Vithout loss of generality, we assume that the decoder follows a wrong path from

lhe original node. Then. we have lhe upper bound of the path metric given by (2).

This bound shows that the metric function along any path different fl'om the correct

palh decreases at least, as fast as the column distance function grows. Thus, fast

re iection of an incorrect path requires a rapidly decreasing metric along incorrect

paths. Consequently, a rapidly increasing column distance function guarantees fast

decoding. This observation has long been recognized for convolutional codes [10].

From lhe above analysis, we see that a similar conclusion can be drawn for trellis

codes. \Ve give an example to veri 6, this. The column distance functions (CDF's)

of two r_ = 9 S-PSI£ trellis codes are shown in Figure 1. Code I has partly-check

coemcients II ° = 1761, II 1 = 0106. and H 2 = 0100 in octal form. The parity-check

coe[ficients for code 2 are /I ° = 1001. tt I = 0036, and 11'z = 05-16. Both codes have

the same free distance (l},._ = 6.3-13. [[owever, note that the CDF of code 1 grows

much faster than code 2. Figure2 shows the computational distributions of the two

codes at an ,e,.\r/i? = 7.7 (lB. It, is seen that the computational behavior of code 1 is

superior to code 2. This example shows that a rapidly increasing column function

results in good computational performance. This is consistant with the results for

convolutional codes[10]. It can also be shown that the initial part of the CDF (called

the distance profile) plays a more important role than the latter part. Thus. the

distance profile should be optimized to achieve good computational performance.

A trellis code is said to have a distance profile (d2o,df,...,d2) superior to the

distance profile (doe, d'12, -.. . d''z),, of another code of the same constraint length t,, if for



somep, 0_<p_< u,

d_ = d'i2, i=O, 1,....p-1 (.3)
> d'2 i = p.

t _

We say a code is an optimum distance profile code if its distance profile is equal

to or superior to that of any other code with the same constraint length. Trellis

codes with optimum distance profiles can be constructed by computer search. In the

construction algorithm, the free distance should be used as a secondary criterion, i.e.,

lhe code having the larger free distance is retained whenever two codes have the same

distance profile. Compared with lhe lrngerboeck codes, we found that the ODP trellis

codes have much smaller free distances for some constraint lengths. For example, the

free distance of ODP lrellis coded 8-PSK with u = 7 is onh, .1.0 compared with

6.59 for lhe lrngerboeck code. This results in a reduction of more than 2.0 dB in

asymptotic coding gain. Tlms. it appears that ODP codes do not provide a good

trade-off between free distance and distance profile.

We have also conducted exhaustive searches for OFD trellis codes in which the

distance profile was used as a secondary criterion. Our results indicate that the

OFD trellis codes do not provide the best trade-off between distance profile and free

distance, either. Figure :1 shows lhe distance profiles of ODP. OFD, and l_ngerboeck

(I:G) trellis coded 8-PSK with u = 7. Note that the OFD code has a much inferior

distance profile than tlle ODP code. (lTngerboeck did not use the distance profile as a

secondary criterion in his code constl'tWtion [1, 2]. Thus. the I:G code has an inferior

distance profile compared lo lhe OFD code, although both codes have lhe same free

distance.)

Thus, we have constructed trellis codes which are neither optimum free distance

nor optimum distance profile. \Ve call the new codes Robustly Good Codes (I1GC).

Given lhat a robustly good trellis code of constraint length u has been found, the

approach used to find a constraint length u+ 1 robustly good trellis code is to find the

code that improves lhe free distance or lhe distance profile of the constraint length

u code, with priority given to improving the free distance. In other words, we try

to fill¢l a longer code which has a free distance or a distance profile superior to or

4



i(lenlical to the shorter one.

Supposelhat the free distanceand distanceprofile of a robustly good trellis code

wilh constraint length u are d2y_(u)and (12(u)= {(l_(u),d'_(u),'".d2.(u)}, respec-

tively. Then a robustly good trellis code with constraint length u + 1 can be found

using the following algorithm:

2, = ,1}_(u) and d 2' = {d_0', d20', -.. , ,I2' d 2'0)Set ., .+,} =
1) Select a new code (7 by systematically changing the parity-check coefficients.

Set i = 0.

2) Compute the column distance (l_ of code C.

3) If d_ < da',, go to 8). Otherwise i _- i + 1, go to 4).

,t) If i _< u + 1, go to 2). Otherwise. go to 5).

5) Compute the ['ree distance ¢l_,. of code (7. If (1}_ > d 2'.. :_,., print the parity-

check coefficients of code C. ,I_, ,l2 = {d_,d_,-..,d2,+, }, and % bette," free distance

code is found". Otherwise. go to 6).

2t6) tf < go to s). Otherwise.go to 7).

7) if (ly > d:' for some i, print the parity-check coefficients of code C. d}_¢_, d 2,

and % better distance profile code is found".

8) If 1he set of codes is exhausled, stop. Otherwise, go to 1).

The above algorithm guarantees finding a trellis code 1hat is no worse than the

previous constraint lenglh code in lerl-ns of free distance and distance profile. The

initial code can be chosen such that it. results in a good trade-off between distance

profile and fl'ee distance. \Ve began our construction of robustly good trellis codes at

a constraint, length of 3. Trellis codes for 8-PSK modulation constructed using this

approach are shown in Table I where cl_ is the minimum distance and d},,_ is the free

distance. {d_ is a good indicator of the distance profile of a. code.) The minimum

distances and fl'ee distances of Ungerboeck (lrG) and Porath and Aulin (P&A)[ll]

codes were also included for comparision. Compared to ODP and OFD trellis codes,

the robustly good trellis codes provide a much better trade-off between fl'ee distance

and distance profile. Indeed, the new codes achieve nearly the same fl'ee distances as

the OFD codes and nearly the same distance profiles a,s the ODP codes. Trellis codes

for 16-QAM modulation have also been constructed using this approach.
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Table I. Robustly good trellis codes for 8-PSK modulation

3

4
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2015

4047

10517

33001

57001

104001

H 1

O6

12

26

066

026

166

0142

0402

H2

04

10

20

060

100

300

0400

0400

RGC

2.59

3.17

3.17

3.76

3.76

4.34

4.34

4.34

4

UG

2.59

2.59

3.17

2.59

2.59

2.59

3.76

3.17

P&A

2.59

3.17

2.59

2.59

2.59

3.17

3.17

RGC UG P&A

4.59

5.17

5.17

6.00

6.34

6.93

6.93

7.76

4.59

5.17

5.76

6.34

6.59

7.52

7.52

7.52

5.17

5.76

6.34

6.59

7.52

7.52

8.10

2302

06462

16266

22266

045666

0400

04400

01400

35400

035400

4.93

4.93

4.93

5.52

5.52

3.17

3.76

3.76

4.34

8.10

8.34

8.69

8.69

9.27

- 8.34

- 8.69

8.69

9.51
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Abstract

This paper proposes a modified transfer function analysis that yields

the individual bit error probability for any specified input bit position. This

analysis proves useful in determining the unequal error protection (UEP)

capabilities of convolutional codes. The UEP transfer function is used to

determine an upper bound on the bit error probabilities for individual input

bit positions in convolutional codes. The form of the individual bit error

probability bound reveals three factors that affect the UEP capabilities of a

convolutional encoder: the effective free distance of each bit position, the

number of low weight code vectors, and the distribution of l's in the input

sequences that generate low-weight code vectors.

[1] This work was supported by NSF grant EID 90-17558, NSF grant NCR 89-03429,

and NASA grant NAG5-557.



Summary

State diagram analysis has long been used to determine the

transfer functions of low complexity (n,k,m) convolutional encoders.

The transfer function, in turn, is then manipulated to determine the

free distance, event error probability, and bit error probability of the

encoder. The bit error probability derived from the standard

transfer function is the probability that an input bit is decoded

incorrectly. However, the error probability which is relevant for

unequal error protection (UEP) codes is the probability of bit error at

each specific input position. UEP codes are of interest in several

environments. For instance, in packet switched networks, the header

information requires more error protection than the data. UEP codes

could provide the additional header protection. In a multi-user

environment, different users may require more or less error

protection than others. UEP codes may again be appropriate.

This paper proposes a modified transfer function analysis that

yields the individual bit error probability for any specLVled input bit

position. The method is described for codes with k >1, but can easily

be applied to codes with k = 1 by first transforming the code to a unit

memory coder or double memory code [1,2].

function analysis will be reviewed. Next,

function will be described and illustrated

First, standard transfer

the modified transfer

with an example. An

algorithm that calculates the modified transfer function is briefly

described. A discussion of results then follows.



An (n,k,m) convolutional encoder accepts k -dimensional input

vectors, adds redundancy according to the encoding rule, and then

outputs n-dimensional code vectors. The parameter m is the

maximum number of memory registers needed to store any element

of the input vector. The total encoder memory, K, is defined as the

total number of memory registers in the encoder.

It is assumed that the reader is familiar with the method of

determining a transfer function from an augmented state diagram

[3]. The two-variable transfer function is of the form

T(X,Y) = _.Ab.dX'_Y b. The average bit error probability for a specific
b=l

d =dfree

IE where = bA ,
transfer function is bounded by Pb (E) < -_ d b

is the total number of nonzero information bits associated with all
d

codewords of weight d, and P_ = 2d[p(1 - p)]i . (For simplicity, we

assume a binary symmetric channel with crossover probability p. )

When the individual bit error probability is desired for each of

the k input positions, then the state diagram must be modified

before Mason's gain formula is applied. Each branch label becomes

XiY[ ' Y_' ...YJ', , where j, is equal to the input bit in the k 'h position,

and i is the Hamming weight of the branch output. Obviously, the

sum of the j, 's is the Hamming weight of the input vector. Mason's

gain formula is then applied. The resulting UEP transfer function has
J,

the form T(X,Y,,...,Yk)= _ _,C,_.jX'tY_'.'...Y_ ',_, where C_.j is the
d=apee j=0

number of paths associated with the j,h input sequence distribution

of l's that generates code vectors of weight d., ja is the number of



distinct input sequence distributions that generate code vectors of

weight d., and bt.j,...,b,, j represents a particular input sequence

distribution of l's. The bound for the individual bit error probabili W

is then P_>(E) < _ B_i)P_, 1 <_i <_k, where P_')(E) is the probability
d

that a bit located in the i 'h position of the input vector is decoded
J,

incorrectly and BJ°= Y, bi.jC_, j is the total number of l's in bit
j=0

position i of all input vectors that generate code vectors of weight d.

Note that the new parameters are related to the original parameters

by the equations B_ = Y_BJ i) and Pb (E) = 1 y_ p_O.
i k i

The modified state diagram for a particular (3,2,1) code is

shown in Figure 1. The generator vectors for the code are listed in

Table 1. The UEP transfer function is

2 4=x'(v_ + r,r_) + x'(2r, r_ + r,r +r,=r +r,

+x'(r, + 2r?r2 +4r?r_ + v?r_+ 4rl_r4 + r?r_ +

The bound for the probability of a bit error in the first input position

is then p_l)(E) < P3 +7P4 + 33P5+"'- Similarly, the bound for the

probability of a bit error in the second input position is given by

p_2) (E) < 3P 3 + 10P 4 + 43P 5 +....

An obvious drawback of state diagram analysis is the high

level of complexity when the memory order and input vector

dimension are not severely restricted. As the total memory K

increases, the number of states increases exponentially. In addition,



as k, the dimension of the input vector increases, the number of

branches leaving each state increases exponentially. The number of

forward paths, loops, and sets of nontouching loops quickly becomes

too unwieldy for analysis. Because of this complexity, an algorithm

was developed to calculate the modified transfer function and

individual bit error bounds. The algorithm is based on the work in

[4], which originally computed the column distance function and

transfer function of (n,l,m) convolutional codes. The algorithm was

generalized to accept (n,k,m) codes, and modified to compute the

newly introduced parameters B_ ') and p_0 (E). The algorithm uses

the distance profile of a code to eliminate unproductive paths in the

search for the column distance function. It will be a useful tool in

developing unequal error protection codes.

Results for a number of existing codes are presented in Table 1.

The UEP transfer function verified the expectation that the bit

positions with lower memory order generally have a greater bit

error probability. However, uneven memory distribution is not

required for unequal error protection, which is demonstrated by the

individual bit error probabilities of the first and third codes listed in

Table 1. While uneven memory distribution is not required, it is

expected that as the distribution becomes more uneven, the unequal

error protection becomes more pronounced.

Examining the form of p_0 (E) and the UEP transfer functions in

Table 1, it can be seen that several factors affect the bit error

probability for a specific input position. For all of the codes studied



so far, the first term of each P_°(E) has the form n(") p Note that_"apee-- afree"

P_,_ is the dominant term of the product. A code for which the first

term of each P_°(E) has the form B °) P will have significantlya_#(i) a,g(i)

more pronounced unequal error protection. The effective free

distance for input bit position i , deft(i), is the lowest Hamming

weight among all code vectors that are generated by input sequences

with at least one 1 in the i 'h position. The effective free distances are

lower bounded by the overall free distance, dfree. In addition to the

individual effective free distances, two other important factors

affecting P_i) (E) are the number of low weight code vectors, and the

number of l's in position i that belong to input vectors

corresponding to the low weight code vectors. That is, in addition to

the traditionally important codeword Hamming weight and

multiplicity, the distribution of l's in the input vector is important.

The number of ones in a particular position is related to the length of

the input sequence and to the entire Hamming weight of that

sequence, although the exact relationship has not been completely

determined.

The individual bit error probability bound in this paper has

three major features. First, it allows existing codes to be evaluated

for unequal error protection. Second, it has revealed a new criterion

that must be considered when designing unequal error protection

codes, i.e., the distribution of l's in the input vectors. Last, it should

again be noted that the input bit positions of the analyzed existing

codes all have an effective free distance equal to the overall free

distance. That is, differences in individual bit error protection have



been due only to differences in the multiplicities and input

distributions. Using the insights gained from the new UEP analysis

technique, we expect to design new codes with different individual

effective free distances.
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Abstract -- A new formula is derived to compute the free distance of rate 1/n

convolutional codes. This formula allows us to derive a new asymptotic lower bound

on the free distance that surprisingly reaches the upper bound in the limit of large

memory m. First, we derive a formula for the weight of the product of two binary

polynomials. Then, by considering the free distance as the minimum weight codeword

in a convolutional code, we prove that, in the limit of large m, the free distance of

rate 1/n convolutional codes is lower bounded by n(rn + 1)/2, i.e., the asymptotic

lower bound equals the asymptotic upper-bound. This formula also leads to a new

approach for constructing finite constraint length convolutional codes.
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1. Introduction

The free distance, die,c, is an important parameter in evaluating the performance of

convolutional codes. Although it is possible to find optimal convolutional codes with

small constraint length by exhaustive search, the free distances of these codes do not

indicate what we might expect of codes with larger constraint lengths. Therefore,

many researchers have tried to derive lower and upper bounds on the free distance of

convolutional codes. Costello [1], Zigangirov and Massey [2] have derived lower and

upper bounds on the free distance of fixed and time-varying convolutional codes using

a Gilbert-type [3] argument, that is, by deriving bounds on ensemble averages. In this

paper, we investigate a new approach to deriving a lower bound on the free distance

of rate 1/n convolutional codes. The free distance can be defined as the lowest weight

codeword in a linear convolutional code. It is shown that an expression for the weight

of the codewords of rate 1/n convolutional codes can be simplified as the constraint

length goes to infinity and that the free distance of randomly constructed codes can

be computed. Their free distance thus represents a lower bound on the free distance
that convolutional codes of these rates can achieve. It is noted that this lower bound

meets the asymptotic upper bound on free distance for rate 1/n convolutional codes.

Although this bound is valid only asymptotically, it suggests that a similar bound

might also be found for finite constraint lengths, and it leads to a new approach for

constructing finite constraint length convolutional codes.

2. Preliminaries

One of the main problems in deriving bounds on the free distance of binary convo-

lutionaI codes is the difficulty of computing the weight of the product of two binary

polynomials. The goal of this section is to introduce a new wav of computing the

weight of codewords. The main idea is to convert modulo-2 addition in tile binary

field into real addition in the integer field. That is, suppose (x,y) are two elements

from the binary field F = {0, 1 }, _5 denotes addition in the binary field, and + denotes

addition in the integer field I, then

xOy = x + y-2xy. (1)

In order to derive our new formula on the free distance of rate 1/n convolutional

codes, we need the following definitions:

Definition 1. Let a(X) be a polynomial with coefficients ai. Then. we define the

0th correlation coefficient of a(X) as

i=oo

i=O

2



and more generally the k th correlation coemcients as

i_o0

Fl_a(jl,j:,...,jk) = __,aiai+j, ...ai+j,+...+jk,
i=0

(4)

where jl, j2, .... jk are k integers strictly greater than O.

Definition 2. Let g(1)(X),g(2)(X),... ,g(n)(X) be the n generator polynomials of a

rate 1/n convolutional code C. Then, let G(X) be the composite generator

G(X) = ¢')(X") + X¢:)(X ") + ... + x"-'_(")(x'), (5)

as defined in [4]. Then. for any information sequence u(X), the code sequence v(X)

is generated by

v(X) = u(X_)G(X). (6)

., Lower bound on the free distance of rate 1/n

convolutional codes

Using the previous definitions, we can obtain the following theorem on computing the

free distance of rate 1/n convolutional codes.

Theorem 1. Let C be a rate 1/n convolutional code with composite generator G(X).

Then the free distance of C can be computed as:

d/tee = min RouRoG -'2 _ Rlu(j)RIG(nj) + 4 _ R2u(j,k)R,2G(7_k. nj)- ..
u(X )¢0 j=0 3,k=O

(7)

(7) gives a general formula for computing the free distance of a rate 1/n convo-

lutional code. However, this formula can be simplified when the constraint length

(memory order) goes to infinity. Specifically, let us construct our generator polyno-

mial by randomly selecting its coefficients from F, that is:

i=n(m+l)-I

c(x) = F__, _ x_, (s)
/=0

1 for any integer i > O. Forwhere gl E F = {0, 1} and Pr(gi = 0) = Pr(gi = 1) = _

these randomly constructed codes, the following theorem can be derived:

3



Theorem 2. Let G(X) of degree n(m 4- 1) - 1 be the composite generator of a

randomly constructed rate 1/n convolutional code with memory order m. Then. with

probability 1.

df_ 1 (9)
 im-o + 1) = 5"

Thus, by taking a random generator G(X), with probability 1 the free distance

is on the order of n(m + 1)/2 as m goes to infinity. Since there exists a large number

of randomly generated codes, and with probability one these codes achieve the free

distance of (9), this gives a lower bound on the free distance of rate 1/n convolutional

codes, i.e., almost all codes reach this bound. This bound represents a significant im-

provement on the previous lower bounds derived on the free distance of convolutional

codes, since it implies that there exists codes for which the free distance reaches the

asymptotic upper-bound derived by Costello [1] and that the number of these codes

is very large.

. Construction of finite constraint

1/n Convolutional Codes.

length rate

Although the bound derived in Theorem 2 is only valid as m goes to infinity, Theorem
1 can be used to obtain a lower bound on the free distance of finite constraint length

codes, but the bound becomes simple to compute only when m goes to infinity. It

is possible, however, that the asymptotic bound is also true for finite m since codes

found by exhaustive search for relatively short constraint lengths satisfy this bound.

In order to give a better idea of the potential of (7) in computing free distance for

finite constraint lengths, we now show that Theorem 1 can lead to a deterministic

construction of rate 1In convolutional codes.

By looking at (7), we note that a code with large free distance requires a large

weight generator (large RoG), small first correlation coefficients R1G(nj), large sec-

ond correlation coefficients R_G(nk, nj), etc. Thus, an algorithm can be derived to

construct generators of rate 1/n convolutional codes, starting from the all ones gen-

erator and replacing ones by zeros as needed to improve the correlation coefficients.

A large number of convolutional codes constructed this way have free distances close

to optimal codes, and the algorithm allows us to construct codes with much higher

constraint lengths than previously constructed codes.



5. Conclusion

A new formula for computing the free distance of rate 1/n convolutional codes is de-

rived. The formula leads to a new asymptotic lower bound on the free distance and to

the construction of finite constraint length convolutional codes in a deterministic way.

It may also be possible that this formula can be generalized to rate k/n convolutional

codes, although the concept of a composite generator does not exist for rates other

than 1/n.
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1. Introduction

This paper describes double memory convohltinal codes, which are an extension of

the unit memory codes (leveloped bv Lee [1]. First, unit memory codes are reviewed,

and then double memory codes are presented. Finallv. an upper bound on the free

distance of double memory codes is developed and examined. Double memory codes

are under study as a melhod of providing unequal error protection [2].

2. Unit Memory Codes

Let ut and t,e denote the information and code vectors, respectively, at sublock t of a

general convolutional code. :\n (I_./,'. 3I) binary convolut ional code can be represented

by the encoding equatio_

:', = _t(,o + ut-l(;l + ... + _-.U(;_t.

The information vector for the (1_./:. 31) code is a/,'-bit vector, the code vector vt is an

n-bit vector, and the e|lco<ting matrices. (;i.i = 0, 1..... I[, are kxn binary matrices.

The state complexity of a convolutional code is defined to be the number of state

variables,K = Mk. (For simplicity, it is assumed that the memory is equally allotted

to the input bits, i.e., each encoder input is delayed by M memory units.)

A unit memory cod<, (I'MC) is a binary convolutional code with memory M = 1.

The encoding equation of a IrNIC is _'t = _t(,'0 + ut-l(;1. It can be shown that an

(l_,_,ko, m) convolutional code with encoding matrices go.gl,...,gm, iS equivalent to

the (7_ = rnno, k = ink,. I) I'NI(' which has lhe <,needing matrices

gO .q I " " " (._tin - 1

0 :/o g.,-_

0 ... go

(;l =

g,, 0 • • • 0

g .... 1 g_ 0

: ".. •

:11 • " • g,n

Tile two codes are equivalent in the sense that the output sequences of the two

encoders are identical for identical input sequences [1]. The state complexities of both

tile (no, ko,m.) code and the (mTL-,, m/,:o, 1) I.TMC are m/,':,.

The free distance, dz,.:_, of a convolutional code is the minimum Hamming distance

betweeen all pairs of codewords that are associated with input sequences that differ

in at least one subblock. It (an be assumed without loss of generality that the first

.)



w

difference between the input sequences appears in subblock 0. Let Vtl,t2 be the code

sequence from time ll lo t2. For an (_. J,'. l) IT._IC. when the only non-zero portion

of the information vector is "0. then the (non-zero) output is v0a = u0[GoGl]. The

set of all such u0's and _'u._'s forms a (2_./,:) block code. It follows that the optimal

dy_¢_ of the (n,k, l) UXI(I is upperbounded bv the minimum Hamming distance of

the optimal (2n, k) block code [1]. The optimal block code minimum distances are

tabulated in [3]. In several cases, the I'MC upper bound is larger than the free

distance attained by the optimal codes with the same state complexity for which

the greatest common denominator of 7_o and /,:o is 1 (hereafter called basic codes).

Lee conducted an exhaustive search for the optimal ITMCs and found several UMOs

better than the optimal basic codes,i.e., the rate and complexity of the optimal UMC

and basic codes were identical, but the free distance of the optimal UMC was higher.

3. Double Memory Codes

,A double memory code (D:I() is a convolutional code with M = 2 that can be

described by vt = utGo + I,t-lG1 + ,t-2G_..\ny (7_,,,ko,2m) convolutionai code with

encoding matrices g0. gl ..... q2,,_ is equivalent to the (mno. mko, 2) DMC with encoding
matrices

G 0

gO (.11 ' '" gm-I

0 go q,,, -2

0 " " " _.Io

.(/ 2 m 0

.(J2?'r_--I f/2m

f]rn + l " " "

ff,;'_, gm+ 1 " " " ff2m -- 1

gm -- ! gm g2m--2

: ".. :

.ql .q2 """ g_

•.. 0

0

rJ2m

The state complexily of the DMC is 2mko. The free distance is again given by

the minimum weight vector resulting from an information sequence that is non-zero

in the 0 th subblock. For an (n. k,2) DMC, because the set of such u0's and their

associated outputs can I)o considered as a (3,,./c) block code with v0a = uo[GoG_G2],

the optimal dfree is upper bounded by the highest attainable minimum distance of a

(3n. k) block code• The l_ounds are shown ill Table 1.



The bound for k = I is uninteresting because an (12.1.2) basic code is also an

(1z, 1,2) DMC. The bound is tight for most values of k > 1. tIowever, in some cases,

this block code upper bound for the DMC d:,._ is larger than the free distance achieved

by the optimal basic code with the same rate and state complexity. In addition, the

block code upper bound for DMCs is greater than or equal to the block code upper

bound for UMCs, which indicates that larger free distances might be attained with

DMCs. However, the existance of a DMC that attains the block code upper bound is

not guaranteed. An exhaustive search for the double memory codes with maximal free

distance is being conducted for small complexity values and results will be presented.

In addition, a free distance bound for DMCs with uneven memory distributions is

currently being studied.
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exploited this connection by comparing the syndrome matrices of both types of codes,

which allows us to lower bound the free distance of a convolutional code with the min-

imum distance of an associated quasi-cyclic code. In this paper we first summarize

Tanner's approach and show how it is possible to relate cyclic codes to convolutional

codes by using quasi-cyclic codes as an intermediary. The problem of minimizing the

constraint length of the convolutional codes is studied and an algorithm to find an

equivalent convolutional code with reduced constraint length is presented. A number

of codes with minimum constraint length and a lower bound on the free distance

are found. However, there remains some open problems. For one, the actual free

distance of some of the convolutional codes appears to be much higher than the lower

bound indicates. Also, the rate of the convolutional codes is lower than the rate of

the original quasi-cyclic codes and may lead to lower rate convolutional codes than

expected.
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1. Introduction

Binary convolutional codes are employed in many communication systems because

they provide efficient error correction and allow simple decoding algorithms. However,

it is known that unlike block codes, for which numerous algebraic approaches lead

to the construction of good codes, convolutional codes do not have a structure that

allows a simple algebraic construction. In most applications, it is necessary to find

good convolutional codes by exhaustive computer search, which limits the complexity
of the codes obtained and their free distances.

Since no simple algebraic approach allows us to construct the generators of a con-

volutional code directly, one idea is to start fi'om existing block codes and transform

them into convolutional codes. Massey, Costello, and Justesen [1] used this approach

in relating the generator of cyclic block codes to the n generators of rate 1/n convo-

lutional codes. Then, Justesen [9] generalized this approach to the construction of

q-ary rate l/n convolutional codes. IIowever, in both of these approaches, the con-

struction leads to good convolutional codes only for certain cyclic codes. The main

problem in relating cyclic codes to convotutional codes is to construct from one cyclic

code generator polynomial the In generator polynomials of a rate l/n convolutional

code. Thus, the idea of multiple generators for convolutional codes leads to the use

of quasi-cyclic block codes, for which the structure is more similar to the structure of

convolutional codes, thereby allowing us to use a larger subclass of block codes than

the class of cyclic codes.

Tanner [3] extended the work of Forney [4] and Massey, Costello, and Justesen

by relating the syndrome matrix of a convolutional code and a quasi-cyclic code. His

main result was that the convolutional code constructed from the quasi-cylic code has

a free distance lower bounded by the minimnm distance of the quasi-cyclic code. The

main problem with this approach, however, is finding the convolutional code with the

minimum constraint length. In this paper, we investigate the different possibilities

that exist in order to reduce the constraint length of the convolutional code, and we

give an algorithm to convert a cyclic code into a convolutional code by using quasi-

cyclic codes as an intermediary. Tables of the best codes constructed from BCH codes

[5] are given, and the results are compared to optimal codes found by computer search

[6][r].

2. Preliminaries

The notation introduced in this section is important to understand the connection

between block and convolutional codes. We will first describe the syndrome matrix

of quasi-cylic codes. Then, we will show how the syndrome matrix of a convolutional



code can be related to the svndrome matrix of a quasi-cyclic code in a particular

form. For a comprehensive treatment of the theorv of convolutional codes, the reader

is referred to [6], and for quasi-cyclic codes, to [8].

2.1. Quasi-Cyclic Codes

Quasi-cyclic codes are a subclass of block codes which include cyclic codes [6] as a

subclass. The defining property of quasi-cyclic codes is that one codeword can be

obtained from any other codeword by cyclic shifts of n positions, which allows us

to decompose a codeword into n blocks of m symbols, or m blocks of n symbols.

Whether we choose the first or the second decomposition leads to a different form for

the syndrome matrix. Note that if n=l, the quasi-cyclic code is cyclic.

A linear quasi-cyclic (N.K) code Cq, where :V = nm is the codeword length, n is

the number of blocks in the codeword, and In is the length of each block, is the set

of all n-tuples having the property defined above. That is, if

v = (v0./'1 ..... <\'-l) (i)

is a codeword in Cq, v shifted cyclically by n positions is also a codeword. In order

to decompose the generator matrix into circnlant blocks, we can reorder the indices

of v to obtain

V = (U 0, Urn, V2m,-•., U(n_l)m. Vl, Urn+l, .... U(n_l)rn+l,.... Urn-l, U2rn-1, .... Unrn-1).

• I _'&C_¢ " " _"d_OCk m'hb_ock

(2)

Thus, a cyclic shift of V by n positions consists of moving the ll_ th block of n bits to

the first block position, and )he other blocks to the right by n positions• This yields

V= (_,,.+,). (3)

for i=0 to n-1 and j=0 to m-l. A shift of n elements in V consists of adding 1 to

j rood m. Such a shift takes any codeword to another codeword. Thus, it is also

possible to write V = (vj+,,) for j=0 to m-1 and i=0 to n-1. It follows from this

notation that we can rearrange the vectors into the row space of a block matrix G

consisting of kn circulant blocks G(j i) of size m x m:

G

c, o°' el," ... °-''
c,;°' c,'," ..-<°-"
: : :

• " " _-Tk- 1

(4)



where k = [ _m ], [] denotes the floor function, and for all i, 0 < i < r_- 1, and j,

0 <_ j <_ k - 1, G} i) is an rn × m circulant matrix, that is

• ° °
• ° °

• ° °

) ... g;'0 ... 0 g}'o)

(5)

The degree I polynomial

(,) ,L,- .(i) v'l_')(.\) = _,;)+ ;Jj,., +... + _j, .- (6)

is called the generator poynomial of the circulant matrix, with l _< m - 1.

The syndrome matrix H of the quasi-cylic code Cq is defined by GH T = 0 and

is an r x n block matrix of m x m circulants, with rm > N - K. (H may contain

linearly dependant rows.) In order to express the generator and syndrome matrices in

a simpler manner, it is possible to use the polynomial form since the ring of circulant

rn x m matrices over the binary field is isomorphic to the ring of polynomials of degree

l less than m, as noted in (6). Therefore. the syndrome matrix H(X) can be written

H(X) =

as:

/,_o)(.¥) /,_,)(.\.) ... h_g-,
/,l°)(X) I,(,')(.¥) ... h?-'

I (n-1
]/(O) (-¥)]/}'_l ("_")"'' /lr-1r-l

(X)

(x)

(x)

(7)

In the next section, we will see how the svndrome matrix of a convolutional code

can be related to the syndrome matrix of the quasi-cylic code shown in (7).

2.2. Convolutional Codes

Let C_ be a rate I/n convolutional code. Then, for any information sequence u (i),

1 < i < k, that enters the encoder, the jth encoded sequence is denoted v (j), 1 <_ j _<

n. By using polynomial notation, the sequence u (i) can be written as

0) ,- (i) vh
u(i)(?k ,) -_- It(t)+ _l 1 ._ + ... + tl h .'t + ..., (S)



and the encoded sequence v tjl can be written as

v(_)(x)= v(oj) + 4J)x +... + 4')x h+ .... (9)

Thus, by denoting

u(X) = (_,(')(x), ,(:)(x),..., _,(O(x)), (9)

and

we can write

v(x) = (v(1)(x),_,(:)(x),...,v(")(x)),

u(X)= G(X)u(X),

where G(X) is a l × n matrix of generator polynomials with the following form:

G(X) =

(l)_(o°)(x) _o (x) ... _:-_)(x)
:/°)(.x) .ql')(x) ... ,jl,,-')(j)

• , •

(JlO_ (.¥)g)1)1(.¥ ) .,. g)271) ()()

(10)

(11)

(12)

Like quasi-cyclic codes, the syndrome matrix H is defined by GI(X)HT(x) = 0,

, (13)

and has the following form:

H(X) =

j,(o°)(x) h(o')(.¥) ... h(o--,)(x)
/,(,°)(x) t,(:)(x) ... h_--')(x)

h_O_)l(,_o) t (1) , , . . hr_l(n-.,.__X) _)(.\')

where r = n - I.

Note that the structure of H(X) in (7) and (13) is identical. This suggests a

connection between the two classes of codes. However, the number of rows r in both

matrices is not defined the same way, which will affect the rate of the convolutional
(i) .

code constructed from a quasi-cyclic code. and the degree of each polynomial hj (X),

for 0 _< j _< r - 1 and 0 < i < n - 1, is less than m in the quasi-cylic code syndrome

matrix, whereas it can be of any degree in the convolutional code syndrome matrix.

o Connection between Convolutional Codes, Quasi-

Cyclic Codes, and Cyclic Codes

Tanner [3] proved that the similarity of structure I)etween the syndrome matrices of

quasi-cyclic and convolutional codes could be used to construct convolutional codes



from quasi-cyclic codesand vice versa. Fhe goal of this section is to summarizehis
resultsand explain someof the remaining difficulties. We first make the connection
betweenthe two classesof codesand give Tanner's main theorems.Sincethe purpose
of this paper is not to derive Tanner's results, we will simply state the main theo-
remswithout proof. We will study how tile theory can be implementedto construct
convolutional codesfrom cyclic codesby using quasi-cycliccodesasan intermediary,
and finally, wewill presentan algorithm that minimizes the constraint length of the
convolutional codesconstructed.

3.1. The Syndrome Matrix Connection between Quasi-Cyclic

Codes and Convolutional Codes.

The syndrome matrix is useful for block codes, especially to determine if a received

vector belongs to the set of codewords defined by tile code or if it needs to be corrected.

In particular, a received vector r(X) belongs to a block code Cb, whose syndrome

matrix is H(X), if and only if

r(X)Hr(x) = O. (14)

As for block codes, a received sequence r(X) belongs to a convolutional code C,,

whose syndrome matrix is H(X), if and only if it satisfies (14).

Tanner's approach to relating the syndrome matrices of quasi-cyclic codes and

convolutional codes is to eliminate the problem that polynomials in a convolutional

code syndrome matrix are of any finite degree by reducing these polynomials modulo

X r" + 1, that is bv taking the remainder of the division of each polynomial by X _ + 1.

The first step is to construct a quasi-cylic code from a convolutional code by this mod-

ular reduction, which allows us to derive theorems relating to the minimum distance

and the rate of the quasi-cyclic code. Then, by applying the reverse transformation

from a quasi-cyclic code to a convolutional code, it is possible to find corollaries to

these theorems which lower bound the free distance of the convolutional code.

Let C, be a rate I/n convolutional code with syndrome matrix H,(X) and Cq

be the associated (N,K) quasi-cyclic code defined by the syndrome matrix Hq(X)

constructed bv reduction modulo .k'''_ + 1 of H,.(X), where m = N/n represents the

size of the circulants of Hq.

Theorem 1. The rate I/n of the convoh,tional code C. is less than or equal to the

rate K/N of the quasi-cyclic code C,_.

Theorem :2. The free distal_ce of the co_volutional code C,, is greater than or equal

to the minimum distance of the quasi-o'clic code Cq.

Theorem 2 suggests that. it is also possible to construct a convolutional code

for which the modular reduction leads to a quasi-cyclic code with known minimum



distance,and thereforethe freedistanceof the convolutional codeis lowerboundedby
the minimum distanceof the quasi-cycliccode. This leadsto the following corollary:

Corollary 1. Let Cq be a (rim,K) quasi-cyclic code with minimum distance dmi,,

defined by an r × n syndrome matrix Hq(X) of polynomials of degree at most m-1.

Let Cv be the convolutional code defined 1)y the r × n syndrome matrix H_(X) such

that

H_(X) = H_(X). (15)

If n-l is the rank of Hv(X), then C_ is a rate I/n convolutional code with dirge >_ dmi,_.

This corollary provides a very helpful method of constructing convolutional codes

from quasi-cylic codes. However, the problem of the constraint length u has not been

studied yet. In fact, the only information on the constraint length of the resulting

convolutional codes come from the size of the quasi-cyclic code circulants m. Indeed,

u _ /(m- [), (16)

since the maximum degree of the polynonlials of Hq(X) is m-l, and the number of

information sequences is l.

In order to minimize the constraint length of the resulting convolutional codes,

Tanner [3] suggested constructing quasi-cyclic codes for the purpose of finding con-

volutional codes. Indeed, numerous lists of quasi-cyclic codes have already been

published, and they could easily be used in the construction described by Corollary

1. However, Tanner also showed that it is possible to convert block cyclic codes

into quasi-cyclic codes and thereby tind the quasi-cyclic code realization that gives

the convolutional code with the highest rate and the smallest const,'aint length. We

now briefly summarize these results of Tanner, which then lead to our construction

algorithm.

3.2. Construction of quasi-cyclic codes from cyclic codes

Starting from a cyclic code of composite length N = rim, it is possible to construct a

quasi-cyclic code as described in the following lemma.

Lemma 1. Any nm × nm circulant matrix is equivalent under row and column

permutations to an n x n block matrix of m × m circulants.

The corollary of this lemma allows us to transform the syndrome matrix of a cyclic

code into the syndrome matrix of a quasi-cyclic code.

Corollary 2. Any rate [£/nm cyclic code is equivalent to a quasi- cyclic code defined

by an n × n syndrome matrix of m x m circulants.

Lemma 1 and Corollary 2 are important because they provide a way of transform-

ing a cyclic code syndrome matrix into a quasi-cyclic code syndrome matrix. Indeed,



the actual syndromematrix of a cyclic codeof rate K/nm is of size (nm- K) x nm.

By extending the circulation of the parity-check polynomial, it is possible to obtain

an nm x nm syndrome matrix Hc of rank nm - l_. Then, each m x m block Hq(,.j) of

the nm x nm quasi-cyclic code syndrome matrix Hq, for 0 <_ I, d <_ n - 1, is obtained

by letting Hq(u)(i,j) = Hc(l + in, d + in) for 0 <_ i,j _< m - 1. In order to obtain

the syndrome matrix of a rate (nm - rm)/nm quasi-cyclic code, it is necessary to

remove l = n -1- row blocks of m rows each from the matrix Hq, while keeping the

rank equal to nm- I(. This means that l _< [ m*"j" (See Example 1.)

This last operation consisting of deleting blocks of rows is the most tedious, since

it is not obvious which blocks can be deleted without decreasing the rank, or which

blocks one should delete in order to construct the convolutional code with the smallest

constraint length. One way of checking the rank of the matrix is to use Tanner's

transform theory developed ill [9] which involves Galois Field Algebra that is not

simple to implement. Another way is to transform Hq into systematic form

sii -1aq _ ......

D

(17),

where s is the rank of H{, I., is the identity matrix of size s x s, A is of dimension

s x (n - s), and D is of dimension (n -.,) x n . Linearly dependent rows of Hq can

only appear in the last rows of the matrix, denoted by D.

Once the syndrome matrix of the quasi-cyclic code is constructed, it is also pos-

sible to permute rows and columns within blocks of circulants without changing the

distance or the rate of the quasi-cyclic code. This operation is particularly useful for

the purpose of constructing a convolutional code with low constraint length, since the

degree of the polynomials in Hq(X) must be as low as possible in order to construct

a convolutional code with small constraint length.

Therefore, in the process of constructing a convotutional code from a cyclic code

using a quasi-cyclic code as an intermediary, it is necessary to combine all these

operations in a single algorithm. We present an algorithm for doing this in the

following section.

o An Algorithm To Construct Convolutional Codes

from Cyclic Codes

In this section, we study how to combine the operations discussed previously to

construct the convolutional code with the smallest constraint length starting from a

given cyclic code.



4.1. Algorithm

As seen previously, once permutations have been performed on the rows and columns

of the cyclic code syndrome matrix to construct the square syndrome matrix of the

quasi-cyclic code (see steps 2 and 3), it is necessary to remove some row blocks of

the quasi-cyclic code syndrome matrix; otherwise, the algorithm would lead to a

rate zero convolutional code, since the generator matrix would have no rows. In

order to remove the rows that correspond to the highest degree polynomials (since

polynomials with high degrees lead to large constraint length convolutional codes), it

is necessary to make permutations within blocks of circulants to reduce the degree of

the polynomials as much as possible (see steps 4,5,6, and 7). Then, we try to remove

the blocks with the highest degree polynomials (see steps 8,9, and 10). Finally, if

the rank of the original cyclic code is maintained, a new permutation within blocks

of circulants might decrease llle degrees of the polynomials again (see step 11). This

leads to the following algorithnl.

Algorithm:

Step 1:

Step 2:

Select an (nm.K) cyclic code with parity-check polyno-

mial h(X) and minimun-i distance d,_in.

Construct tile _m. xmn matrix H_ by putting h(X) in the

first row and ils successive cyclic shifts in the remaining

rOWS.

Step 3: Construct the. × n block matrix H,_ of m x m circulants

using Corollary '2.

Step 4:

Step 5:

Convert Hv to its polynomial forln Hq(X).

Construct the vectors R = (%,..., rn-1 ) and

C = (Co, .... c,,-L ), where rl = max0<j<__l deg Hq(u)(X ),

and ca" = maxo<i<,__l (leg H,al,.,)(X), 0 _< I, J _< n - 1.
Let r = maxo<l<n-1 I'l and c = nqax0<d<n_ 1 ca.

Step 6: Permute rows within block l of circulants of Hq, for

0 <_ I _< n - 1. until r is minimal over all possible per-

mutations.

Step 7: Repeat Step 6 with colulnnS and mininaize c.

Step 8: Let l= [ mi'-2"J.



Step 9: Delete I row blocks I from Hq, where I is tile index of the

largest l values of rl.

Step 10: Compute the rank of Hq. If the rank is nm - K, go to

Step 11. If the rank is strictly less than nrn- K, go back

to Step 9 and try another set of row blocks. If all sets of

I row blocks have been tried, set l = l- 1 and go back to

Step 9. If I = 0. then the construction is impossible.

Step 11: Hq is an (n - l) x , block matrix of m x m ciculants.

Repeat Steps 4.5,6, and 7 on Hq with 0 _< I <_ n - 1 - l
instead of n.

Step 12: Let H_(X)=Hv(X) be the svndrome matrix of a rate 1/n

convolutional code with d:,._ >_ Clm,n.

Step 13: Construct a generator matrix G_.(X) such that
" r :G_(._ )H v (._) = O.

Step 14: Convert Gv(X)to minimal form (see [10] and [11]). Stop.

Note that Steps 6 and 7 can I)e exchanged without modification of the result.

Note also that step 11 consists in permuting rows and columns like in steps 4,5,6, and

7, except that the number of rows in H, r is now only n - I.

4.2. Example

In order to fully understand Ibis algorilhm, we now give an example of the con-

struction of a convolutional code. starting from the (1.5.5) BCH code with minimum

distance drain = 7, originally l aken as the example in Tanner's paper [3].

Example 1. Let C_ be the (1.5,,5) BCH code.

Step 1: h(X) = 1 + X + .\:_ + .ks, that is h=[ll0101], _ = 3, m = 5, and/t" = .5.



Step 2: Hc =

1 1 0 1 0 I 0 0 0 0 0 0 0 0 0
011010100000000

001101010000000

000]10101000000

000011010100000

000001101010000

000000110101000

000000011010100

000000001101010

000000000110101

100000000011010

010000000001101

101000000000110

010100000000011

101010000000001

Step 3: Hq =

lIO00

01100

O0110

00011

10001

00100

O00lO

00001

10000

01000

01000!

00100

00010

00001

10000

10000

01000

00100

00010

00001

11000

01100

00110

00011

10001

00100

000 l 0

0000 1

10000

01000

01000

0O1OO

O0O10

OOOO1

10000

10000

01000

00100

00010

00001

11000

01100

00110

00011

10001

1 +,Vi 1 .\,4 ]
Step 4: Hq(X) = X 3 1 + X "I 1 .

.¥4 .\-3 1 + .\-4

(Note that in Hq. the l)olynomials correspond to the first column of each

circulant. )

Step 5: R = (4,4,4) and C = (4,4,4), so )" = 4 and c = 4.

10



Step6 and 7: Hq =

10001
11000
OllO0
00110
00011
10000
01000
00100
00010
00001
00001
10000
01000
01) 100
00010

00001
10000
01000
00100
00010
00011
10001
11000
01100
00110
10000

01000

00100

00010

00001

10000

01000

00100

00010

00001

00010

00001

10000

01000

00100

00011

10001

11000

01[00

00110

R = (1,2,2) and C = (1,2,2).

StepS: l= 1.

Step 9: Hq =

1 000 1

11000

01100

00110

00011

00001

10000

01000

00100

00010

00001

10000

01000

00 1 00

000 1 0

1 0000

01o00
001 00

000 10

00001

10000

01000

00100

00010

00001

00011

10001

11000

01100

O0110

Step 10: ra77k = 10 = n,7;_ - K.

Step 11" No modification from Step .9. Hq stays the same.

1Step 12: H,(X)=Hq(X)= X 1 X+.\'2 •

Step 13: Gv(X)= [ I+.\+.V _ 1+.\'2+X3 X 3 ].

11



Step 14: Gv(X) is alreadv in minimal form. The constraint length of tile rate 1/3

convolutional code is 3, and df,ee >_ 7. Actually, in this particular case, dl_e, = 7.

This example results in a constraint length of only 3, whereas the upper bound

is 4 from (16). The free distance equals its lower bound, which is not the case in

general, but the best rate 1/:3 convolutional code with constraint length 3 has a free

distance of 10 [6]. The algorithm was also applied to BCH codes of length 15, 63,
and 255, since their lengths are composite. Specifically, 15 = 3 x 5, 63 = 3 x 3 x 7,
and 255 = 5 x 3 x 17, which allows us to construct codes with rates k/a, k/5, k/7,

and k/9. The other rates that can be constructed from these codes, such as k/15,

k/17, or k/21, are very low and thus were not considered. In the next section, we

give tables of convolutional codes constructed from these classes of BCH codes.

So Results and Comments on Construction of Con-

volutional Codes from BCH Codes

The tables of constructed codes show tile code rate, the generator matrix with poly-

nomials in octal form (e.9., 54 corresponds to 101100, i.e., 1 + X 2 + xa), the constraint

length, the memory order, the original BCtI code, the lower bound on the free dis-

tance, the computed free dislance (for some codes 2), and the best code found by

exhaustive search. In this last column, either the free distance of the best code with

the same rate and constraint length is given or the constraint length u of the best

code with the same rate and free distan('e is given.

2X means unknown

12



5.1, Construction Table for Galois Field GF(16)

Rate Generator Matrix

1/3 54 1 7

1/5 1 4 7 54 64

1/5 42274

40406
2/5 00444

2/3

3/5

Const.

Length

:3

3

2

Mem.

Order

3

3

2

BCH Lower Bd Comp.

Code on dl_ dy_

(15,5) 7 7

(15,5) 7 11

(15,5) 7 7

1 1 (15,11) 3 3

064
•) l (15,11) 3 3

640

46'200

440"20

6400"2

(15,11)

Best

Code

10 [6]

16 [71

13 [7]

4 [7]

3 [6]

4 [7]

13



5.2. Construction Table for Galois Field GF(64)

Rate

2/9

1/9

2/9

3/9

1/7

2/7

3/7

4/7

6/7

,5/7

2/3

Generator Best

Matrix Len. Ord. Code

11 34 63 12 46 ,56 -14 62 14
10 ,5 (63,18) 21 X X

34 63 12 46 56 44 62 14 22

11 34 63 12 46 56 44 62 14 5 5 (63,18) 21 25 X

2 12 3 4 44 6 62 14 6
8 4 (63,24) 15 X X

12 3 4 44 6 62 14 ll 4

3 4 44 6 62 14 6 4 24

12 3 4 44 6 62 1-t (i -1 12 4 (63,24) 15 X X

2 12 3 .t 44 6 62 I-1 6

44 0 66 76 .52 7t 62 t 4 (63,30) 13 21 28 [7]

44 0 66 76 _2 74 (_2
s 4 (63,30) 13 x _=4 [7126 44 66 1 24 26 5-1

44 0 66 76 52 7=1 62

72 62 '22 76:34 02 47 1:3 5 (63,30) 13 X X
26 ,t4 66 1 24 26 r).l

02 3 1 32 64 56 (i

51 4 04 04 4 13 1

36 26 7 74 62 72 1-1

74 64 4 3,1 0 6 0-1

-t 0 0 0 0 2 -1

-1 0 2 0 t)-1 0

6 -t 2 0 (} 2 0

0 ,1 4 0 0 .1 -t

6 2 0 -1 0 0 0

4 0 4 0 I -I 0

0 4 0 0 0 0 6

4 0 0 0 0 t ,1

0 2 0 4 0 I 6

0 0 0 4 i 0 t

0 2 4 4 0 2 0

44"2

0 6

Con. Mem. BCH Bd Com.

Code dl_ di_

16 5 (63,36) 11 11 X

4 1 (63,57) 3 3 X

3 1 (63,57) 3 3 4 [7]

"2 1 (63,,57) 3 3 3 [6]

14



5.3. Construction Table for Galois Field GF(256)

Rate

2/3

1/3

2/3

3/5

1/3

2/3

1/3

2/5

1/5

2/3

3/5

Generator Con.

Matrix Len.

6123 637 0442
24

0665 64614 76646

62564 76204 3754 12

7632 314 735
21

2004 465 4415

14 7 44 34 36

07 674 6 534 4 14

3 3 76 7 1

641 716 354 S

554 7364 152
17

461 3 46

71 15 74 5

77 614 454 0 602
15

601 073 066 602 0

247 216 362 662 54 S

72 75 26
9

6 32 56

0 26 26 64 54

:]4 6 44 i 0 10

6 64 2 4 5

"2"2 0 42 24 76

"2 6 0 I (;

4/5 1 7 7 5 :1 11

54 0 l 34 (;

Mem. BCH

Ord. Code

13 (255,215)

12 (255,215)

ll (255,223)

6 (255,231)

S (255.231)

9 (255.231)

5 (255,239)

S (255.239)

8 (255,239)

5 (255,239)

4 ( 2.55,239 )

-i (255.239)

Bd

d/ree

11

11

9

5

Comp. Best

di_ Code

X X

20 24 [6]

X u=9 [7]

x .=5 [71

14 18 [6]

X u=6 [6]

10 13 [6]

X X

•_,'2 ,,=5 [71

X 9 [6]

x _=3 [71

X X

5.4. Comments on the Constructed Codes

Some conclusions can be drawn fi'om the tables above. On the one hand, some of

the codes cannot be compared to codes found by exhaustive search, since they have a

larger constraint length than any code of the same rate found by exhaustive search.

Thus, this algebraic construction allows us to construct codes that are impossible

to find by exhaustive search. On tile other hand, the codes for which a comparable

optimal code exists usually have a suboptimal ratio of free distance to constraint

length, although for some constructed codes only the lower bound on the free distance

[5



is known, which may be weak compared to the actual free distance of the code. For

example, the rate 1/5 code with constraint length 8 has free distance 22, whereas the

bound only gives 5.

It was also observed, especially for GF(256), that only very high rate BCH codes

lead to the construction of quasi-cyclic codes and convolutional codes. This means

that it is hard to find convolutional codes of low rate with very high free distance,

since high rate block codes have low minimum distance. More generally, it was

observed that a large number of BCH codes do not lead to the construction of quasi-

cyclic codes with lower cycle lengths m, and it is necessary to use BCH codes with

much higher rates than the convolutional codes constructed. For example, the first

2/3 convolutional code constructed from GF(256) was based on a (255,215) code,

whereas it should theoretically be possible to start with the (255,171) BCH code,

which would lead to a higher free distance.

Finally, it was observed that this construction leads to good codes for rates close

to 1/2. In particular, the rat,' 3/7 and 1/7 codes constructed from the (63,30) and

(6a,a6)BCH codes have a large constraint length and a good, although suboptimal,

ratio of free distance to constraint length.

6. Conclusions

We have proposed a construction algorithm for convolutional codes based on Tanner's

discovery of the connection between cyclic codes, quasi-cyclic codes and convolutional

codes. Codes have been constructed with this algorithm, and some conclusions have

been drawn about this new algebraic approach to constructing convolutional codes

from block codes. In particular, this algebraic construction allows us to construct

non-standard rate convolutional codes wit ll large constraint length, but in general

leads to suboptimM codes.

One might wonder if trying to relate quasi-cyclic codes to convolutional codes does

not lead to very good convolut ional codes because the quasi-cyclic codes used are not

designed for the construction of convolutional codes. Thus, the problem of designing

good quasi-cyclic codes with the l)Url)ose of constructing good convolutional codes

should be investigated.
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